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ABSTRACT 

Among natural disasters affecting the United States, North Atlantic tropical 

cyclones (TCs) and hurricanes are responsible for the highest economic losses and are one 

of the main causes of fatalities. Although we cannot prevent these storms from occurring, 

skillful seasonal predictions of the North Atlantic TC activity and associated impacts can 

provide basic information critical to our improved preparedness. Unfortunately, it is not 

yet possible to predict heavy rainfall and flooding associated with these storms several 

months in advance, and the lead time is limited to few days at the most. On the other hand, 

overall North Atlantic TC activity can be potentially predicted with a six- to nine-month 

lead time.  

This thesis focuses on the evaluation of the skill in predicting basin-wide North 

Atlantic TC activity with a long lead time and rainfall with a short lead time. For the 

seasonal forecast of TC activity, we develop statistical-dynamical forecasting systems for 

different quantities related to the frequency and intensity of North Atlantic TCs using only 

tropical Atlantic and tropical mean sea surface temperatures (SSTs) as covariates. Our 

results show that skillful predictions of North Atlantic TC activity are possible starting 

from November for a TC season that peaks in the August-October months.  

The short term forecasting of rainfall associated with TC activity is based on five 

numerical weather prediction (NWP) models. Our analyses focused on 15 North Atlantic 

TCs that made landfall along the U.S. coast over the period of 2007-2012. The skill of the 

NWP models is quantified by visual examination of the distribution of the errors for the 

different lead-times, and numerical examination of the first three moments of the error 
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distribution. Based on our results, we conclude that the NWP models can provide skillful 

forecasts of TC rainfall with lead times up to 48 hours, without a consistently best or worst 

NWP model. 
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PUBLIC ABSTRACT 

North Atlantic tropical cyclones (TCs) and hurricanes are responsible for a large number 

of fatalities and economic damage. Skilful seasonal predictions of the North Atlantic TC 

activity can provide basic information critical to our improved preparedness. First half of 

this study focuses on the development of statistical-dynamical seasonal forecasting 

systems for different quantities related to the frequency and intensity of North Atlantic 

TCs. TCs are associated with multiple hazards, including strong winds, storm surges, 

heavy rainfall and flooding. While the effects of winds and surge are mostly felt along the 

coastal areas near the landfall location, heavy rainfall and flooding are responsible for 

significant damage over much larger areas, even hundreds of kilometers from the coast. 

So a skillful forecast of rainfall associated with North Atlantic TCs has higher significant 

for emergency management services as well as in water resource management.  In the 

second half of this study, we have performed the skill evaluation of five state-of-the-art 

numerical weather prediction (NWP) systems in forecasting rainfall from North Atlantic 

TCs.  

 

 
 

 



www.manaraa.com

 

vi 
  

TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

1.1 Motivation ................................................................................................................. 1 

1.2 Objectives ................................................................................................................. 4 

CHAPTER 2: MULTI-MODEL ENSEMBLE FORECASTING OF NORTH ATLANTIC 

TROPICAL CYCLONE ACTIVITY ................................................................................. 8 

2.1. Introduction .............................................................................................................. 8 

2.2 Data ......................................................................................................................... 10 

2.3 Methodology ........................................................................................................... 12 

2.4 Results ..................................................................................................................... 20 

2.5. Summary of Chapter 2 ........................................................................................... 30 

CHAPTER 3: EVALUATION OF THE SKILL OF NUMERICAL WEATHER 

PREDICTION MODELS IN FORECASITNG RAINFALL ASSOCIATED WITH 

TROPICAL CYCLONES2................................................................................................ 32 

3.1 Introduction ............................................................................................................. 32 

3.2 Data and Methodology ............................................................................................ 33 

3.3 Results ..................................................................................................................... 36 



www.manaraa.com

 

vii 
  

3.4 Summary of Chapter 3 ............................................................................................ 49 

CHAPTER 4: CONCLUSIONS ....................................................................................... 51 

APPENDIX A: SUPPLEMENTAL MATERIALS FOR CHAPTER 2 ........................... 56 

APPENDIX B: SUPPLEMENTAL MATERIAL FOR CHAPTER 3 ............................. 96 

REFERENCES ............................................................................................................... 138 

 

 

 



www.manaraa.com

 

viii 
  

LIST OF TABLES 

Table 2-1: Summary of GCMs from the NMME project used in this study. ................... 11 

Table 4-1: Summary of the 2016 season median hurricane forecast. First 6 models 
are forecasts according to the six individual GCMs described in Table 
1.1 and the remaining five models are the forecasts according to 
different MME models described in the methodology section. 
Initialization month of March 2016 (2nd column) is the shortest lead 
time and lead times increases as we move right, with the longest as the 
initialization in November of 2015. Black filled cells indicate forecasts 
above the average value from the 1982-2015 record (6.32). ........................... 53 

Table 4-2: Same as in Table 4-2 for tropical storms. The average number of 
tropical storms over the period of 1982-2015 is 9.24. ..................................... 53 

Table 4-3: Same as in Table 4-2 for ACE. The average value of ACE over the 
period of 1982-2015 is 5.8. .............................................................................. 54 

Table 4-4: Same as in Table 4-2 for PDI. The average value of PDI over the period 
of 1982-2015 is 2.4. ......................................................................................... 54 

 



www.manaraa.com

 

ix 
  

LIST OF FIGURES 

Figure 1-1: Monetary losses by hazard type (1960-2014) [Source: 
http://hvri.geog.sc.edu/SHELDUS/index.cfm?page=reports]. ........................ 3 

Figure 1-2: Research objective of this study vs. desired predictability. The black 
crosses indicate the quantity and lead time considered in this thesis. ............. 6 

Figure 2-1: Time series of the model coefficients for the model parameter shown 
in Eq. (2.1) and Eq. (2.2). Top panels (a and b) describe the λ 
parameter [Eq. (2.1)] for tropical storm forecast. Middle and bottom 
panels (c-f) describe the location parameter µ [Eq. (2.2)] and scale 
parameter σ over the period 1981–2015 for ACE (gray line) and PDI 
(black line). .................................................................................................... 14 

Figure 2-2: Skill evaluation of each GCM in forecasting SSTAtl (right panels) 
and SSTTrop (left panels) compared to SSTs from Met Office Hadley 
Centre. Pearson correlation coefficient (top row), RMSE (middle 
row) and MAE (bottom row) are the three metrics used in the 
evaluation of seasonal SST anomalies for different lead times (i.e., 
August being the shortest lead time). The black lines represent the 
average of the different GCMs’ forecasts. ..................................................... 16 

Figure 2-3: Top panel: Weights for each predictor with respect to RMSE 
between the predicted SST anomalies from each GCM and the 
reference SST anomalies. Middle and bottom panels: weights with 
respect to the λ parameter (for hurricanes and tropical storms) and the 
µ parameter (for ACE and PDI) for the four different TC metrics. The 
dotted lines represent equal weights (1/6 for August to February 
initialization and 1/5 after that). The sudden jump in weights for the 
initializations months of January, December and November is 
because NASA has only nine-month lead times (see Table 1), so the 
proportion of the weights for the remaining models increases. ..................... 19 

Figure 2-4: Retrospective seasonal forecast of hurricane using the model in 
which the two SST predictors are weighted, initialized from 
November of the previous year to August of the same year. The 
circles are the observed values, the white line is the median (50th 
percentile) for each season. The outer light gray area represents the 
region between the 5th and 95th percentiles, while the middle dark 
gray area represents the region between the 25th and 75th percentiles.
 ....................................................................................................................... 22 

Figure 2-5: Same as Figure 2-4, but for tropical storms. ................................................ 23 

Figure 2-6: Same as Figure 2-4, but for ACE. ............................................................... 24 



www.manaraa.com

 

x 
  

Figure 2-7: Same as Figure 2-4, but for PDI. ................................................................. 25 

Figure 2-8: Spearman correlation coefficient between the 50th percentiles 
(median) of the forecasted and the observed values for different 
initialization months. Here M01= GFDL, M02 = GFDL-B01, M03 = 
GFDL-A06, M04 = NASA, M05 = COLA, M06 = CMC2, M07 = 
equally weighted model, M08 = weighted model, M09 = equally 
weighted model without COLA, M10 = weighted model without 
COLA, M11 = hierarchical model and M12 = Five-year persistence. .......... 28 

Figure 2-9: Differences in the rank correlation with respect to the equally 
weighted model (M07). M01-M06 (below the black line) represent 
individual GCMs, while M8-M11 represent MME models similar to 
Figure 2-8. Positive (negative) values refer to a better (worse) 
performance by the equally weighted model M07. ....................................... 29 

Figure 2-10: Probabilistic verification of the forecasts using the Kolmogorov-
Smirnov test at different significance levels (90%, 95% ad 99%). Here 
M01= GFDL, M02 = GFDL-B01, M03 = GFDL-A06, M04 = NASA, 
M05 = COLA, M06 = CMC2, M07 = equally weighted model, M08 
= weighted model, M09 = equally weighted model without COLA, 
M10 = weighted model without COLA, M11 = Hierarchical model. 
The larger the p-value, the lesser the evidence of departure from the 
uniform distribution, which is the target to avoid a too narrow or too 
wide forecast distribution. ............................................................................. 30 

Figure 3-1: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 
2011) based on the CPC dataset. The red curve with dots represents 
the storm track. .............................................................................................. 36 

Figure 3-2: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 
2011) based on remote sensing (top row) and NWP models (second 
to last rows). For the NWP models, lead-times increases left to right 
from 0 hour to 5 days. The red lines represent the storm track. .................... 38 

Figure 3-3: Rainfall errors (in mm) for Hurricane Irene (August 26-30 2011) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. ......................................................... 40 

Figure 3-4: Probability density functions (pdfs) of rainfall errors exhibited by 
the ECMWF model for different forecast lead-times. The gray shaded 
envelopes represent the range of pdfs obtained from the rainfall errors 
of the five remote sensing products. .............................................................. 42 

Figure 3-5: Same as Figure 3-4, but for UKMO model. ................................................ 43 

Figure 3-6: Same as Figure 3-4, but for NCEP model. .................................................. 44 



www.manaraa.com

 

xi 
  

Figure 3-7: Same as Figure 3-4, but for CMA model. ................................................... 45 

Figure 3-8: Same as Figure 3-4, but for CMC model. .................................................... 46 

Figure 3-9: Mean (in mm; left column), standard deviation (in mm; middle 
column) and skewness (right column) of the rainfall errors for 
different lead-times and NWP models. The gray rectangular boxes in 
the background represent the range of values for each statistics based 
on the five remote sensing products. No forecast information for 
NCEP, CMA, and CMC was available for Tropical Storm Barry 
(2007), Tropical Storm Erin (2007) and Hurricane Umberto (2007). ........... 48 

Figure A-1: Retrospective seasonal forecast of hurricane using GFDL model, 
initialized from November (of the previous year for each hurricane 
season) to August (of the same year). The black circles are observed 
values, the white line is the median (50th percentile) for each season. 
The outer light gray area represents the region between the 5th and 
95th percentiles, while the middle dark gray area represents the region 
between the 25th and 75th percentiles. .......................................................... 56 

Figure A-2: Same as in Figure A-1, but using GFDL-B01 ............................................ 57 

Figure A-3: Same as in Figure A-1, but using GFDL-A06 ............................................ 58 

Figure A-4: Same as in Figure A-1, but using NASA .................................................... 59 

Figure A-5: Same as in Figure A-1, but using CMC2 .................................................... 60 

Figure A-6: Same as in Figure A-1, but using COLA .................................................... 61 

Figure A-7: Same as in Figure A-1, but using model in which the predictors are 
equally weighted. ........................................................................................... 62 

Figure A-8: Same as in Figure A-1, but using model in which the predictors are 
equally weighted without COLA. .................................................................. 63 

Figure A-9: Same as in Figure A-1, but using model in which the predictors are 
weighted without COLA. ............................................................................... 64 

Figure A-10: Same as in Figure A-1, but using Hierarchical model. ............................. 65 

Figure A-11: Retrospective seasonal forecast of TC using GFDL model, 
initialized from November (of the previous year for each hurricane 
season) to August (of the same year). The black circles are observed 
values, the white line is the median (50th percentile) for each season. 
The outer light gray area represents the region between the 5th and 
95th percentiles, while the middle dark gray area represents the region 
between the 25th and 75th percentiles. .......................................................... 66 

Figure A-12: Same as in Figure A-11, but using GFDL-B01 ........................................ 67 



www.manaraa.com

 

xii 
  

Figure A-13: Same as in Figure A-11, but using GFDL-A06 ........................................ 68 

Figure A-14: Same as in Figure A-11, but using NASA ................................................ 69 

Figure A-15: Same as in Figure A-11, but using CMC2 ................................................ 70 

Figure A-16: Same as in Figure A-11, but using COLA ................................................ 71 

Figure A-17: Same as in Figure A-11, but using model in which the predictors 
are equally weighted. ..................................................................................... 72 

Figure A-18: Same as in Figure A-11, but using model in which the predictors 
are equally weighted without COLA ............................................................. 73 

Figure A-19: Same as in Figure A-11, but using model in which the predictor 
are weighted without COLA. ......................................................................... 74 

Figure A-20: Same as in Figure A-11, but using Hierarchical Model. .......................... 75 

Figure A-21: Retrospective seasonal forecast of ACE using GFDL model, 
initialized from November (of the previous year for each hurricane 
season) to August (of the same year). The black circles are observed 
values, the white line is the median (50th percentile) for each season. 
The outer light gray area represents the region between the 5th and 
95th percentiles, while the middle dark gray area represents the region 
between the 25th and 75th percentiles. .......................................................... 76 

Figure A-22: Same as Figure A-21, but using GFDL-B01. ........................................... 77 

Figure A-23: Same as Figure A-21, but using GFDL-A06 ............................................ 78 

Figure A-24: Same as Figure A-21, but using NASA. ................................................... 79 

Figure A-25: Same as Figure A-21, but using CMC2. ................................................... 80 

Figure A-26: Same as Figure A-21, but using COLA. ................................................... 81 

Figure A-27: Same as Figure A-21, but using model in which predictors are 
equally weighted. ........................................................................................... 82 

Figure A-28: Same as Figure A-21, but using model in which the predictors are 
equally weighted without COLA. .................................................................. 83 

Figure A-29: Same as Figure A-21, but using model in which the predictors are 
weighted without COLA. ............................................................................... 84 

Figure A-30: Same as Figure A-21, but using Hierarchical model. ............................... 85 

Figure A-31: Retrospective seasonal forecast of PDI using GFDL model, 
initialized from November (of the previous year for each hurricane 
season) to August (of the same year). The black circles are observed 



www.manaraa.com

 

xiii 
  

values, the white line is the median (50th percentile) for each season. 
The outer light gray area represents the region between the 5th and 
95th percentiles, while the middle dark gray area represents the region 
between the 25th and 75th percentiles. .......................................................... 86 

Figure A-32: Same as Figure A-31, but using GFDL-B01. ........................................... 87 

Figure A-33: Same as Figure A-31, but using GFDL-A06. ........................................... 88 

Figure A-34: Same as Figure A-31, but using NASA. ................................................... 89 

Figure A-35: Same as Figure A-31, but using CMC2. ................................................... 90 

Figure A-36: Same as Figure A-31, but using COLA. ................................................... 91 

Figure A-37: Same as Figure A-31, but using model in which the predictors are 
equally weighted. ........................................................................................... 92 

Figure A-38: Same as Figure A-31, but using model in which the predictors are 
equally weighted without COLA. .................................................................. 93 

Figure A-39: Same as Figure A-31, but using model in which the predictors are 
weighted without COLA. ............................................................................... 94 

Figure A-40: Same as Figure A-31, but using Hierarchical model. ............................... 95 

Figure B-1: Rainfall accumulation (in mm) for Tropical Storm Barry (June 2-6 
2007) based on the CPC dataset. The red line with dots represents the 
storm track. .................................................................................................... 96 

Figure B-2: Rainfall accumulation (in mm) for Tropical Storm Erin (August 16-
21 2007) based on the CPC dataset. The red line with dots represents 
the storm track. .............................................................................................. 97 

Figure B-3: Rainfall accumulation (in mm) for Hurricane Humberto (September 
11-15 2007) based on the CPC dataset. The red line with dots 
represents the storm track. ............................................................................. 98 

Figure B-4: Rainfall accumulation (in mm) for Hurricane Dolly (July 23-28 
2008) based on the CPC dataset. The red line with dots represents the 
storm track. .................................................................................................... 99 

Figure B-5: Rainfall accumulation (in mm) for Tropical Storm Fay (August 19-
28 2008) based on the CPC dataset. The red line with dots represents 
the storm track. ............................................................................................ 100 

Figure B-6: Rainfall accumulation (in mm) for Hurricane Gustav (August 31- 
September 5 2008) based on the CPC dataset. The red line with dots 
represents the storm track. ........................................................................... 101 



www.manaraa.com

 

xiv 
  

Figure B-7: Rainfall accumulation (in mm) for Tropical Storm Hanna 
(September 5-8 2008) based on the CPC dataset. The red line with 
dots represents the storm track. ................................................................... 102 

Figure B-8: Rainfall accumulation (in mm) for Hurricane Ike (September 12-15 
2008) based on the CPC dataset. The red line with dots represents the 
storm track. .................................................................................................. 103 

Figure B-9: Rainfall accumulation (in mm) for Hurricane Ida (November 10-12 
2009) based on the CPC dataset. The red line with dots represents the 
storm track. .................................................................................................. 104 

Figure B-10: Rainfall accumulation (in mm) for Tropical Storm Hermine 
(September 6-11 2010) based on the CPC dataset. The red line with 
dots represents the storm track. ................................................................... 105 

Figure B-11: Rainfall accumulation (in mm) for Tropical Storm Lee (September 
3-8 2011) based on the CPC dataset. The red line with dots represents 
the storm track. ............................................................................................ 106 

Figure B-12: Rainfall accumulation (in mm) for Tropical Storm Debby (June 
25-28 2012) based on the CPC dataset. The red line with dots 
represents the storm track. ........................................................................... 107 

Figure B-13: Rainfall accumulation (in mm) for Hurricane Isaac (August 28- 
September 2 2012) based on the CPC dataset. The red line with dots 
represents the storm track. ........................................................................... 108 

Figure B-14: Rainfall accumulation (in mm) for Hurricane Sandy (October 28-
31 2012) based on the CPC dataset. The red line with dots represents 
the storm track. ............................................................................................ 109 

Figure B-15: Rainfall accumulation (in mm) (in mm) for Tropical Storm Barry 
(June 2-6 2007) based on remote sensing (top row) and NWP models 
(from second to last rows). For the NWP models, lead-times increases 
left to right from 0 hour to 5 days. The red lines represent the storm 
track. Forecasts for NCEP, CMA and CMC were not available. ................ 110 

Figure B-16: Rainfall accumulation (in mm) (in mm) for Tropical Storm Erin 
(August 16-21 2007) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. Forecasts for NCEP, CMA and CMC were not 
available. ...................................................................................................... 111 

Figure B-17: Rainfall accumulation (in mm) (in mm) for Hurricane Humberto 
(September 11-15 2007) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 



www.manaraa.com

 

xv 
  

the storm track. Forecasts for NCEP, CMA and CMC were not 
available. ...................................................................................................... 112 

Figure B-18: Rainfall accumulation (in mm) (in mm) for Hurricane Dolly (July 
23-28 2008) based on remote sensing (top row) and NWP models 
(from second to last rows). For the NWP models, lead-times increases 
left to right from 0 hour to 5 days. The red lines represent the storm 
track. ............................................................................................................ 113 

Figure B-19: Rainfall accumulation (in mm) (in mm) for Tropical Storm Fay 
(August 19-28 2008) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 114 

Figure B-20: Rainfall accumulation (in mm) (in mm) for Hurricane Gustav 
(August 31- September 5 2008) based on remote sensing (top row) 
and NWP models (from second to last rows). For the NWP models, 
lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. ............................................................................. 115 

Figure B-21: Rainfall accumulation (in mm) (in mm) for Tropical Storm Hanna 
(September 5-8 2008) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 116 

Figure B-22: Rainfall accumulation (in mm) (in mm) for Hurricane Ike 
(September 12-15 2008) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 117 

Figure B-23: Rainfall accumulation (in mm) (in mm) for Hurricane Ida 
(November 10-12 2009) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 118 

Figure B-24: Rainfall accumulation (in mm) (in mm) for Tropical Storm 
Hermine (September 6-11 2010) based on remote sensing (top row) 
and NWP models (from second to last rows). For the NWP models, 
lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. ............................................................................. 119 

Figure B-25: Rainfall accumulation (in mm) (in mm) for Tropical Storm Lee 
(September 3-8 2011) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 



www.manaraa.com

 

xvi 
  

increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 120 

Figure B-26: Rainfall accumulation (in mm) (in mm) for Tropical Storm Debby 
(June 25-28 2012) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 121 

Figure B-27: Rainfall accumulation (in mm) (in mm) for Hurricane Isaac 
(August 28- September 2 2012) based on remote sensing (top row) 
and NWP models (from second to last rows). For the NWP models, 
lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. ............................................................................. 122 

Figure B-28: Rainfall accumulation (in mm) (in mm) for Hurricane Sandy 
(October 28-31 2012) based on remote sensing (top row) and NWP 
models (from second to last rows). For the NWP models, lead-times 
increases left to right from 0 hour to 5 days. The red lines represent 
the storm track. ............................................................................................ 123 

Figure B-29: Rainfall errors (in mm) for Tropical Storm Barry (June 2-6 2007) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. Forecasts for NCEP, CMA 
and CMC were not available. ...................................................................... 124 

Figure B-30: Rainfall errors (in mm) for Tropical Storm Erin (August 16-21 
2007) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. Forecasts for NCEP, 
CMA and CMC were not available. ............................................................ 125 

Figure B-31: Rainfall errors (in mm) for Hurricane Humberto (September 11-15 
2007) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. Forecasts for NCEP, 
CMA and CMC were not available. ............................................................ 126 

Figure B-32: Rainfall errors (in mm) for Hurricane Dolly (July 23-28 2008) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. ....................................................... 127 



www.manaraa.com

 

xvii 
  

Figure B-33: Rainfall errors (in mm) for Tropical Storm Fay (August 19-28 
2008) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. .......................................... 128 

Figure B-34: Rainfall errors (in mm) for Hurricane Gustav (August 31- 
September 5 2008) based on remote sensing (top row) and NWP 
models (second to last rows) The errors are computed with respect to 
the CPC data. For the NWP models, lead-times increases left to right 
from 0 hour to 5 days. The red lines represent the storm track. .................. 129 

Figure B-35: Rainfall errors (in mm) for Tropical Storm Hanna (September 5-8 
2008 based on remote sensing (top row) and NWP models (second to 
last rows) The errors are computed with respect to the CPC data. For 
the NWP models, lead-times increases left to right from 0 hour to 5 
days. The red lines represent the storm track. ............................................. 130 

Figure B-36: Rainfall errors (in mm) for Hurricane Ike (September 12-15 2008) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. ....................................................... 131 

Figure B-37: Rainfall errors (in mm) for Hurricane Ida (November 10-12 2009) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. ....................................................... 132 

Figure B-38: Rainfall errors (in mm) for Tropical Storm Hermine (September 6-
11 2010) based on remote sensing (top row) and NWP models 
(second to last rows) The errors are computed with respect to the CPC 
data. For the NWP models, lead-times increases left to right from 0 
hour to 5 days. The red lines represent the storm track. .............................. 133 

Figure B-39: Rainfall errors (in mm) for Tropical Storm Lee (September 3-8 
2011) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. .......................................... 134 

Figure B-40: Rainfall errors (in mm) for Tropical Storm Debby (June 25-28 
2012) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. .......................................... 135 



www.manaraa.com

 

xviii 
  

Figure B-41: Rainfall errors (in mm) for Hurricane Isaac (August 28- September 
2 2012) based on remote sensing (top row) and NWP models (second 
to last rows) The errors are computed with respect to the CPC data. 
For the NWP models, lead-times increases left to right from 0 hour to 
5 days. The red lines represent the storm track. .......................................... 136 

Figure B-42: Rainfall errors (in mm) for Hurricane Sandy (October 28-31 2012) 
based on remote sensing (top row) and NWP models (second to last 
rows) The errors are computed with respect to the CPC data. For the 
NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. ....................................................... 137 

 

 

  



www.manaraa.com

 

1  
 

CHAPTER 1: INTRODUCTION 

1.1 Motivation 

North Atlantic tropical cyclones (TCs) represent a major catastrophic natural 

phenomenon affecting large areas of North and Central America. These storms generally 

occur during late spring into late fall every year, with peak activity in August-October. 

According to the National Climatic Data Center (NCDC), over the period 1980-2014 North 

Atlantic TCs were responsible for 31 events that caused losses in excess of $1 billion 

(http://www.ncdc.noaa.gov/billions/), corresponding to 23.3% of all the weather and 

climate disasters affecting the United States. An even more staggering number is associated 

with the economic losses: TCs were responsible for $417.9 billion (Consumer Price Index 

adjusted to 2011 dollars value), which correspond to 47.4% of all the losses caused by all 

the natural disasters responsible for $1+ billion combined (Smith and Katz 2013). Strong 

winds, storm surges, heavy rainfall and flooding associated with TCs are the major threats 

to life and infrastructure not only in coastal areas but miles inland as well (e.g., Elsner and 

Kara 1999; Blake et al. 2007; Changnon 2008; Lin et al. 2010; Villarini et al. 2011; 

Rappaport 2000, 2014; Lin et al. 2014; Villarini et al. 2014). According to the Spatial 

Hazard Events and Losses Database for the United States (SHELDUS), hurricanes and 

tropical storms were responsible for $267 billion losses for the period of 1960-2014 (see 

Figure1-1), which correspond to about 1/3 of all the losses over that period. More than 50% 

of the fatalities associated with TCs between 1970 and 2004 were caused by fresh water 

flooding (http://www.nws.noaa.gov/os/water/ahps/pdfs/InlandFloodBrochure7F.pdf\). 

Hurricane Ivan (2004) alone accounted for two-thirds of the total flood insurance payments 

http://www.ncdc.noaa.gov/billions/
http://www.nws.noaa.gov/os/water/ahps/pdfs/InlandFloodBrochure7F.pdf
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made by the federal government in that year, impacting 23 different states (Czajkowski et 

al. 2013). Over the period 1963-2012, Rappaport (2014) showed that almost 50% of U.S 

landfalling TCs have at least one fatality related to rain, while the storm surge was 

responsible for 49% of all the fatalities directly attributable to these storms. Blake et al. 

(2011) provide a summary of the deadliest and costliest TCs from 1851 to 2010. While 

many of the storms that caused the largest number of fatalities generally occurred in the 

earlier part of the twentieth century, the majority of the TCs responsible for the highest 

losses are concentrated in the last decade of the twentieth century and in the first decade of 

the twenty-first century. The staggering numbers represent a combination of different 

factors, related to both the hazard (i.e., TCs) and the increasing exposure (i.e., highly 

populated areas along the coast, with a large concentration of properties and wealth). 

However, TCs are not just a threat to coastal areas, but affect much larger areas of 

the United States. In particular, while strong winds and storm surge mostly represent a 

hazard for the coastal areas (e.g., Czajkowski and Done 2014), heavy rainfall and flooding 

impact inland areas, hundreds of kilometers from the storm track (e.g., Villarini et al. 

2011). Villarini et al. (2014) showed that U.S. landfalling TCs are responsible for major 

flooding over Florida, the U.S. East Coast from South Carolina to New Jersey and the 

northeastern United States; they also found that TCs can cause major flooding over the 

central United States, affecting in particular major urban areas including Chicago and 

Detroit. Although precipitation directly associated with TCs is less than 25% of the annual 

precipitation even in the most affected regions, the impacts in terms of extremes can be 

significant (e.g., Kunkel et al. 2010 ; Jiang and Zipser 2010; Barlow 2011). 
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Despite these negative socio-economic impacts, landfalling TCs have also been 

found to play a significant role as “drought busters” (Elsberry 2002; Kam et al. 2013; 

Maxwell et al. 2012; Maxwell et al. 2013). Torrential rainfall associated with TCs 

occasionally can have the effect of breaking a prolonged drought by recharging reservoirs 

and elevating soil moisture. In these situations TC rain events mitigate one environmental 

stressor, even as the potential for damage associated with the extreme rainfall, high-speed 

wind and ocean surge remain (Kam et al. 2013; Maxwell et al. 2013). 

A better understanding and a skilful forecast of these storms is therefore necessary 

to help reduce the socio-economic consequences of these events and to provide basic 

information critical to improved preparedness.  

 

 
Figure 1-1: Monetary losses by hazard type (1960-2014) [Source: 
http://hvri.geog.sc.edu/SHELDUS/index.cfm?page=reports]. 

 

 

http://hvri.geog.sc.edu/SHELDUS/index.cfm?page=reports
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1.2 Objectives 

Ideally, we would like to be able to provide skillful regional predictions of TC activity 

and associated impacts with a long lead time (Vecchi and Villarini 2014). Figure 1.2 

highlights what the most hydrologically impactful forecasts would be and different lead 

times. We would want to be able to predict flooding (or at least rainfall) associated with 

these storms at a regional level with a long lead time, say months and years. However, this 

is still not possible if not at a much shorter lead time (on the order of hours and days). What 

we can potentially predict with a much longer lead time (i.e., from months to years; Gray 

1984a, b; Gray et al. 1992; Lehmiller et al. 1997; Vitart and Stockdale 2001;  Camargo et 

al. 2007; Camargo and Barnston 2009; Smith et al. 2010; Villarini et al. 2010; Villarini and 

Vecchi 2012, 2013;  Klotzbach 2014; Murakami et al. 2016) is the basinwide activity. 

Therefore, while we would want to be in the top-right corner of Figure 1.2 (i.e., long-lead 

predictions of hydrologic impacts of TCs), the state of the science mostly allows us to move 

along the x- and y-axes: we can obtain long-lead predictions of a quantity that may not be 

very useful from an impact perspective (e.g., number of hurricanes in the North Atlantic 

during a given season) or we can have forecasts of rainfall associated with TCs but with a 

much shorter lead time.  

Figure 1.2 summarizes the goals of this study (see black crosses). 

1. To develop seasonal forecasting systems for the basinwide North Atlantic TC 

activity. 

Basinwide TC activity can be summarized by four metrics related to the frequency, 

duration and intensity of these storms: number of tropical storms and hurricanes, power 

dissipation index (PDI) and accumulated cyclone energy (ACE) (details about each of these 



www.manaraa.com

 

5  
 

metrics will be provided in Chapter 2.3). Here we will examine the possibility of predicting 

these four metrics with a long lead time (8-10 months before the beginning of the TC 

season). Our hypothesis is that skillful predictions with such a long lead time are possible 

by developing statistical-dynamical models in which the TC activity is tied to the state of 

the oceans and their intrinsically longer predictability. Recently, there have been some 

encouraging improvements towards accomplishing this task (e.g., Smith et al. 2010; Vecchi 

et al. 2013; Villarini and Vecchi 2013).  

We will obtain predictors related to the North Atlantic TC activity from six GCMs of 

the North American Multi-Model Ensemble (NMME) project (Kirtman et al. 2014) with a 

lead time from one month to one year. Because of the availability of multiple GCMs, our 

second hypothesis is that ensemble averaging and merging will lead to an improved skill 

compared to predictions from individual GCMs, especially at longer lead times. For 

instance, Vecchi et al. (2011) found that the skill of the hurricane forecasting slightly 

increased when they merged covariates related to the temperature of the oceans forecasted 

from the Geophysical Fluid Dynamics Laboratory (GFDL–CM2.1) and the National 

Centers for Environmental Prediction’s Climate Forecast System (NCEP–CFS). Threfore 

one of the important objectives of the first part of the thesis is to examine whether and for 

what lead times we are able to increase the skill of individual models by developing a multi-

model ensemble (MME) forecasting system.  

file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_23
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Figure 1-2: Research objective of this study vs. desired predictability. The black crosses 

indicate the quantities and lead times considered in this thesis. 

 

2. To evaluate the skill of NWP models in forecasting TC rainfall. 

NWP models provide forecasts of different quantities, including precipitation, with a lead 

time from few hours to up to two weeks. While the outputs of these models are routinely 

used in forecasting the track of TCs, much less is known about their capability in 

forecasting the rainfall associated with these storms. Moreover, how rapidly the 

performance of these models in forecasting TC rainfall deteriorates with increasing lead 

time is not known. Our goal is to evaluate the skill of NWP models in forecasting TC 

rainfall by quantifying their errors with respect to different “observational data.”  
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In this thesis, Chapter 2 focuses on the development of forecasting systems for long-lead 

predictions of basinwide TC activity, while Chapter 3 deals with the evaluation of the skill 

of NWP models in short-term forecasting of TC rainfall. Chapter 4 summarizes the main 

conclusions of this work and provides the seasonal forecast of North Atlantic TC activity 

for the upcoming 2016 season.  
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CHAPTER 2: MULTI-MODEL ENSEMBLE FORECASTING OF 

NORTH ATLANTIC TROPICAL CYCLONE ACTIVITY 

2.1. Introduction 

The history of seasonal forecasting of the North Atlantic TC activity using statistical 

or dynamical models can be traced back to William Gray’s work in the first half of the 

1980s (Gray 1984a, b), while (Camargo et al. 2007) describe some of the developments in 

the seasonal forecasting methodology ever since. Currently, there are a number of 

institutions and research groups around the globe that routinely issue seasonal forecasts of 

North Atlantic TC activity, generally from April to August (e.g., Camargo and Barnston 

2009; Klotzbach 2014; Vecchi et al. 2014; Camp et al. 2015). Issuing a seasonal forecast 

of TC activity 9-10 months before the start of a particular season is still challenging (Vecchi 

and Villarini 2014), but there has been recent progress towards accomplishing this task 

(e.g., Smith et al. 2010; Vecchi et al. 2013; Villarini and Vecchi 2013). Therefore, one of 

the research questions we address in this chapter is related to the evaluation of the forecast 

skill for different quantities related to TC activity with lead times starting from November 

of the year prior to the season to forecast; our focus will be on basin-wide number of 

tropical storms and hurricanes, power dissipation index (PDI) and accumulated cyclone 

energy (ACE) (see next section for a description of these quantities). We will accomplish 

this task by building hybrid statistical-dynamical models that use only tropical Atlantic and 

tropical mean SSTs to describe the variability exhibited by the observational record. As 

discussed later on, these predictors are selected because they reflect the importance of both  

_____________________________ 
1 Adapted from: Villarini, G., B. Luitel, G.A. Vecchi, and J. Ghosh, Multi-model ensemble forecasting of 
North Atlantic tropical cyclone activity, submitted to Climate Dynamics, 2016. 
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local and non-local effects on the genesis and development of TCs in the North Atlantic 

basin (e.g., Latif et al. 2007; Swanson 2007; Vecchi et al. 2008, 2011, 2013; Villarini et al. 

2010; Zhao et al. 2009, 2010; Ramsay and Sobel 2011; Villarini and Vecchi 2012, 2013). 

Another important research question that we are addressing in this chapter is related to 

the possibility of increasing the skill of individual models by merging them. As mentioned 

in Chapter 1, Vecchi et al. (2011) found that the skill in forecasting hurricane activity 

slightly increased when they merged covariates (SSTs) forecasted from the GFDL–CM2.1 

and NCEP–CFS. Here we examine whether and for what lead times we are able to increase 

the skill of the individual models by developing a MME forecasting system. MME 

forecasting is a relatively new line of research and believed to provide potentially large 

improvements in weather and climate forecasting in particular for longer lead times (e.g., 

Palmer et al. 2005; Yun et al. 2005). Studies showed that multi-model techniques can help 

in reducing model errors, while the ensemble technique can help in normalizing 

uncertainties associated with initial conditions (e.g., Richardson 2000; Hagedorn et al. 

2005; Yun et al. 2005; Zhu 2005; Tebaldi and Knutti 2007). Equal-weight average, 

weighted average and Bayesian methods are some of the more widely used techniques to 

combine individual models in the process of building MME models (Robertson et al. 2004). 

Here we consider different MME techniques as a function of lead times and TC quantity, 

highlighting the improvements we can achieve in forecasting North Atlantic TC activity.  

This chapter is organized as follows. Section 2.2 will describe the data we use, followed 

by the methodology in Section 2.3; the results are in Section 2.4 while Section 2.5 will 

summarize this chapter.  

file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_23
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2.2 Data 

We consider four quantities to summarize the North Atlantic TC activity: hurricane 

frequency, frequency of tropical storms lasting more than 2 days, PDI and ACE. Hurricane 

and tropical storm frequencies tell us how active a season is, whereas PDI and ACE 

incorporate storm duration, frequency and intensity over an entire TC season (Bister and 

Emanuel 1998; Bell and Chelliah 2006; Emanuel 2007; Villarini and Vecchi 2012, 2013). 

We use the National Oceanic and Atmospheric Administration’s (NOAA) National 

Hurricane Center’s best-track database (HURDAT2) to obtain hurricane and tropical storm 

counts, and use HURDAT-2’s maximum wind speed to compute ACE and PDI (Landsea 

and Franklin 2013). ACE and PDI are calculated similar to Villarini and Vecchi (2012), 

where ACE (PDI) is computed by taking the sum of the square (third power) of the wind 

speed exceeding 17 m/s during the lifetime of each storm during each TC season and the 

value is adjusted by a factor of 109 (1011). We use observed data from 1958 onward to limit 

the effect of inhomogeneity in the data in the earlier part of the TC record. 

As in previous dynamical and statistical modeling studies (e.g., Camargo and Barnston 

2009; Zhao et al. 2009, 2010; Villarini et al. 2010; Vecchi et al. 2011, 2013; Villarini and 

Vecchi 2012), we use tropical Atlantic and tropical mean SST as our predictors. As 

reference SST data, we use monthly SST, observations from Met Office Hadley Centre 

(Rayner et al. 2003). From the Hadley Center’s gridded datasets, we compute time-series 

of SST, averaged over the North Atlantic TC main development region (10°N - 25°N and 

80°W- 20°W; SSTAtl hereafter) and over the tropical belt (30°S -30°N around the globe; 

SSTTrop hereafter). Similar to Villarini and Vecchi (2013), seasonal SST anomalies are 

file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_33
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_34
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computed with respect to the climatology for 1982-2005, averaged over the peak hurricane 

period of August to October.  

Table 2-1: Summary of GCMs from the NMME project used in this study. 

Model Version 
Acronyms 
used in this 
study 

Lead 
times 
(months) 

Number of 
ensemble 
available 

Geophysical Fluid 
Dynamics Laboratory 

GFDL-CM2.1 GFDL 12 10 

GFDL-CM2.5-A06 GFDL_A06 12 12 

GFDL-CM2.5-B01 GFDL_B01 12 12 

NASA Global 
Modeling and 
Assimilation Office 

NASA-GMAO-062012 NASA 9 11 

The Center for Ocean-
Land-Atmosphere 
Studies–Rosenstiel 
School of Marine and 
Atmospheric Science 

COLA-RSMAS-CCSM3 COLA 12 6 

Canadian Centre for 
Climate Modeling and 
Analysis 

CCCma – CanCM4 CMC2 12 10 

 

In developing our forecasting system, we use SST forecasts from a set of retrospective 

predictions by six experimental seasonal-to-interannual prediction systems from the 

NMME (Kirtman et al. 2014). Table 2-1 summarizes the NMME models we considered, 

together with the acronyms we use to refer to them in the text. Rather than using each 

member from each model, we only focus on the ensemble mean of the different members. 

The skill of the GCMs in forecasting SSTs with different lead times is evaluated using 

different statistical metrics quantifying the degree of similarity [Pearson correlation 

coefficient (Corr. Coeff.) and Spearman correlation coefficient] or dissimilarity [the root 
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mean square errors (RMSE) and the mean absolute errors (MAE)] between observations 

and forecasts.  

2.3 Methodology  

We use Poisson regression to forecast the seasonal frequency of North Atlantic 

hurricane and tropical storms (e.g., Elsner and Schmertmann 1993; Elsner and Jagger 2006; 

Villarini et al. 2010; Vecchi et al. 2011). The expected value (λ) of the Poisson regression 

model is a function of two explanatory variables, SSTAtl and SSTTrop; increasing values of 

SSTAtl would be associated with an increase in storm activity, while increasing values of 

SSTTrop would lead to an overall decrease in TC activity. The model selection and the 

choice of these two predictors for tropical storms are based on Villarini et al. (2010). The 

λ parameter of the Poisson regression model is linearly related to the predictors via a 

logarithmic link function as follows: 

 0expq Atl Atl Trop TropSST SST               (2.1) 

where the subscript q refers to the different TC quantity (subscript “H” for hurricanes and 

“TS” for tropical storms). 

For hurricane counts (H), we use the same  coefficients as in Vecchi et al. (2011) (β0 

= 1.707, βAtl = 1.388 and βTrop = -1.521). Vecchi et al. (2011) trained the statistical model 

not only on observations but also on dynamical model outputs across a broad range of 

climate states.  

In forecasting the number of tropical storms, we follow the retroactive validation 

method discussed in Mason and Baddour (2008). More specifically, we estimate the 

file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_32
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_29
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_29
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parameters for TS in Equation 2.1 based on the observations available over the 1958-1981 

period. We then use the Atlantic and tropical SST forecasts to obtain the forecast 

distribution for 1982. We then re-estimate the parameters including the 1982 data, and 

issue the forecast for 1983. We continue in this way across all the available years. A time 

series of the model coefficients for the Poisson parameter TS [Eq. (2.1)] for the tropical 

storms is provided in Figure 2-1 (panels a and b). The time series reveals that the value of 

model’s intercept (β0) increased around 1995 and remained almost constant at the higher 

value after that, consistently with Elsner et al. (2004).  

For the seasonally integrated ACE and PDI indices, we follow the approach described 

in Villarini and Vecchi (2012, 2013). They used a gamma distribution which has two 

parameters,  and  to describe the year-to-year variability in normalized PDI and ACE. 

Based on the parameterization of the gamma distribution in the Generalized Additive 

Model in Location, Scale, and Shape (Rigby and Stasinopoulos 2005, 2007), the expected 

value is equal to the location parameter µ, and the variance is equal to µ2σ2. Similar to 

Villarini and Vecchi (2012, 2013), we model the µ parameter as a linear function of SSTAtl 

and SSTTrop via a logarithmic link function:  

0 Atl Tropexp( .SST .SST )Atl Trop       (2.2) 

while the σ parameter is kept constant. A time series of the coefficients for the gamma 

model is presented in Figure 2-1 (panels c-f). Similar to Elsner et al. (2004) and Villarini 

and Vecchi (2013), there appears to be a step change around 1995. It is also interesting to 

notice that there appears to be another potential shift starting from around 2010, according 

to which we may be headed towards a quieter period in terms of TC activity (this is present 

in the time series of the coefficients for both the Poisson and gamma models). While it is 

file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_33
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_34
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_33
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_34
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_10
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_33
file:///C:/Users/bluitel/Desktop/Graduation%20materials/Thesis/Thesis%20Draft.doc%23_ENREF_33
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too early to make conclusive statements because of the limited number of years, this is 

something that it is worth taking into account as we move forward with the examination of 

the North Atlantic TC record.  

 

 
Figure 2-1: Time series of the model coefficients for the model parameter shown in Eq. 
(2.1) and Eq. (2.2). Top panels (a and b) refer to the λ parameter [Eq. (2.1)] for tropical 
storm forecast. Middle and bottom panels (c-f) describe the location parameter µ [Eq. (2.2)] 
and scale parameter σ over the period 1981–2015 for ACE (gray line) and PDI (black line). 
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As discussed in Section 2.2, we have SST forecasts from six GCMs. Figure 2-2 

shows the skill of each individual prediction system and their average in forecasting 

seasonal SSTAtl (left panels) and SSTTrop (right panels). We evaluate the skill using 

different metrics and for different lead times, from August-initialized (i.e., the shortest lead 

time) to November of previous year-initialized forecasts (i.e., the longest lead time). 

Overall, these models are very skillful in forecasting the tropical mean and tropical Atlantic 

SSTs; the correlation coefficient between forecasts and observation is very high (larger 

than 0.8), with small values of RMSE and MAE, in particular at the shorter lead times. The 

forecast skill for SSTTrop tends to decrease for increasing lead times faster than the forecast 

of SSTAtl, which tends to preserve the skill observed at the shortest lead time longer. The 

skill for the majority of the models is comparable, with the exception of COLA (red line), 

which shows the worst performance among the six GCMs for all lead times. Because not 

a single model exhibits consistently higher skill for all lead times and SST quantities, a 

weighted model, where weights for each prediction system are computed as a function 

RMSE for each lead times, might be helpful in optimizing the overall skill.  
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Figure 2-2: Skill evaluation of each GCM in forecasting SSTAtl (right panels) and SSTTrop 
(left panels) compared to SSTs from Met Office Hadley Centre. Pearson correlation 
coefficient (top row), RMSE (middle row) and MAE (bottom row) are the three metrics 
used in the evaluation of seasonal SST anomalies for different lead times (i.e., August being 
the shortest lead time). The black lines represent the average of the different GCMs’ 
forecasts. 

 

There are different ways to combine individual models to build MME [refer to 

Robertson et al. (2004) for details]. The three different approaches we use to merge the 

forecasts from the individual GCMs are as follows: 
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1. Equally weighted (arithmetic) average method, where predictors from each GCM are 

given equal weights. 

2. Weighted average method, where predictors from each prediction system are weighted 

based on their RMSE with respect to the reference SST anomalies. For example let us 

consider SSTAtl and one of the initialization months; the RMSE for the ith GCM is 

computed as: 

2
,1

( )n
i j jj

i

F O
RMSE

n






 (2.3) 

where n is the number of years used for the forecast; Fi,j and Oj are the forecast and 

observed SSTAtl for the jth year and the ith  GCM. 

Using RMSE, the weight for each model is computes as:  

1

1
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
 (2.4) 

where i ranges from 1 to the number of available GCM forecasts for that year. 

Then the weighted SSTAtl value for each year is computed as: 

,
1

( )
k

Atl j i i j
i

SST w F


  (2.5) 

where j = 1 to n years and i = 1 to k GCMs. 

3. Weighted average to build the empirical distribution of the quantity of interest, where 

the weights for each GCM are given based on the RMSE between the observed values 

of the TC metric of interest and the  parameter of the Poisson distribution (for 

hurricanes and tropical storms) or the  parameter of the gamma distribution (for PDI 



www.manaraa.com

 

18  
 

and ACE). For instance, for PDI and one of the initialization months, the RMSE for the 

ith GCM is computed as: 

2
,1

( )n
i j jj

i

O
RMSE

n








 (2.6) 

where µi,j and Oj are the expected value from the gamma regression and observed PDI 

for the jth year and the ith prediction system, respectively; the weights are computed 

similar to the weights for SSTs explained above (see equation 2.4).  

Once the weights are computed, we build the forecast distributions for each of the four 

metrics (hurricane and tropical storm counts, ACE and PDI) for every year based on Monte 

Carlo simulations, giving weights to each GCM depending on how well it was able to 

reproduce the observational record. We termed this weighted MME model as “Hierarchical 

model.” 

Figure 2-3 summarizes all the weights for each lead time using the different weighting 

schemes described above. Weights in Figure 2-3 reflect the skills of each GCM based on 

the RMSE (Figure 2-2, middle row). To take into account the relatively poor performance 

of the COLA model with respect to the other GCMs, we also consider weighting schemes 

excluding COLA.  
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Figure 2-3: Top panel: Weights for each predictor with respect to RMSE between the 
predicted SST anomalies from each GCM and the reference SST anomalies. Middle and 
bottom panels: weights with respect to the λ parameter (for hurricanes and tropical storms) 
and the µ parameter (for ACE and PDI) for the four different TC metrics. The dotted lines 
represent equal weights (1/6 for August to February initialization and 1/5 after that). The 
sudden jump in weights for the initializations months of January, December and November 
is because NASA has only nine-month lead times (see Table 2-1), so the proportion of the 
weights for the remaining models increases.  

 

We quantify the skill of these forecasts using both deterministic and probabilistic 

verification metrics. We use the median of the Poisson or gamma distributions as our 
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reference forecast value. To quantify the accuracy of the forecasts, we use the Spearman 

correlation coefficient between observed TC metric and the corresponding median forecast. 

Because of the probabilistic nature of our forecasting system, we use the probabilistic 

verification approach described in Laio and Tamea (2007) for PDI and ACE (continuous 

variables). We compare the distribution of zi = Pi(xi) [xi is the observed value for the ith 

year, and P(·) is the forecast distribution] to a standard uniform distribution using the 

Kolmogorov-Smirnov test. A good forecast system should not exhibit too much or too little 

dispersion, with the uniform distribution being the target distribution (see also Wilks 

(2011)). 

 

2.4 Results 

We use the Poisson regression model discussed in the previous section to perform the 

retrospective seasonal forecasting of hurricane and tropical storm frequencies for the period 

of 1982-2015. Figures 2-4 and 2-5 show the retrospective forecasts for different 

initialization months (the shortest lead time is initialized in the month of August and the 

longest lead time is initialized in the month of November of the previous year) using the 

weighted model in which the weights are computed based on how well the GCMs can 

reproduce tropical Atlantic and tropical mean SSTs. These simple and parsimonious 

Poisson regression models are able to capture the interannual variability in seasonal 

hurricane and tropical storm counts very well. Even as early as November of the previous 

year, most of the observations are within the 5th and 95th percentiles (90% confidence 

interval) and as the lead time decreases, the median forecast tends to follow the observed 

values more closely.   
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For ACE and PDI, we use the gamma regression model to perform retrospective 

seasonal forecasting over the period of 1982-2015. Similar to what observed for the number 

of tropical storms and hurricanes, Figures 2-6 and 2-7 highlight the ability of these models 

in capturing year-to-year variability in these two TC quantities. The overall visual 

agreement increases as we reduce the lead time. Moreover, there is much more inter-annual 

variability at the shorter lead times. The time series in Figures 2-4-2-7 exhibit a larger 

activity post-1995, and it is unclear whether the current relatively quiet few last years are 

a possible indication that we are currently in another regime shift towards reduced TC 

activity, or whether it is just part of the year-to-year variability (see also results in Figure 

2-1 and relative discussion). Complete results for all the individual GCMs and MME 

schemes are provided in the Appendix A, (Figures A-1 - A-10 for the number of hurricanes, 

Figures A-11 - A-20 for the number of tropical storms, Figures A-21 - A-30 for ACE and 

Figures A-31 - A-40 for PDI). Overall, these results indicate that it is possible to obtain 

skillful forecasts of North Atlantic TC activity several months prior to the TC season. 
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Figure 2-4: Retrospective seasonal forecast of hurricane using the model in which the two 
SST predictors are weighted, initialized from November of the previous year to August of 
the same year. In each panel, the circles are the observed values, the white line is the median 
(50th percentile). The outer light gray area represents the region between the 5th and 95th 
percentiles, while the middle dark gray area represents the region between the 25th and 75th 
percentiles.    
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Figure 2-5: Same as Figure 2-4, but for tropical storms. 
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Figure 2-6: Same as Figure 2-4, but for ACE. 
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Figure 2-7: Same as Figure 2-4, but for PDI. 
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Because one of the main goals of this work is to compare the results obtained using 

individual models and the merged MME models, we used Spearman correlation coefficient 

to quantify the skill in retrospective forecast for all the individual and weighted models. 

Figure 2-8 shows the Spearman correlation coefficients between the 50th percentiles 

(median) of the forecasted values and the observed values for different initialization 

months for each of the individual prediction systems and MME models in forecasting all 

four metrics (hurricane and tropical storm counts, ACE and PDI). Here the models from 

M01 to M06 represent the forecasts based on the individual GCMs described in Table 2-1, 

models from M07 to M11 represent different MME schemes described in Section 2.3, 

while M12 in the top row of each panel represents five–year persistence as a measure of 

‘‘null skill’’ as recommended in World Meteorological Organization (2008). When we 

compare the skills of individual models (M01–M06) with MME models (M07–M11), we 

found that MME models are less dependent on lead times. In other words, the skills are 

more consistent for all lead times in the case of MME models as compared to the individual 

models even if we consider equally weighted model. The skill values we obtain are large, 

with correlation coefficients larger than 0.7-0.8 for several lead times. We also have 

relatively large correlation values for long lead times, in particular for the weighted models. 

The hierarchical model is the one that shows the highest performance across a large number 

of lead times. For instance, the November- or December-initialized forecasts have 

correlation coefficients in excess of 0.5 (see Figures 2-8 and 2-9). Unlike Figure 3 in 

Vecchi et al. (2011) and Figure 5 in Villarini and Vecchi (2013) where there was a peak in 

skill in the March-April initialization, we find a gradual increment in forecasting skill as 
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the lead time decreases. This can be credited to the improved ability of the most recent 

versions of the dynamical prediction systems, as well as to the merging technique. 

To further highlight the improvements associated with margining forecasts from 

different GCMs, in Figure 2-9 we show the differences in Spearman correlation coefficient 

between the equally weighted model (M07) and the other models for each of the TC 

quantities and for different lead times. Overall, it is clear that weighting the models leads 

to improved skill over the individual GCMs, in particular at longer lead times. Moreover, 

the hierarchical model formulation (M11) leads to improved results over the equal-weights 

model, in particular for the November- and December-initialized forecasts. 
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Figure 2-8: Spearman correlation coefficient between the 50th percentiles (median) of the 
forecasted and the observed values for different initialization months. Here M01= GFDL, 
M02 = GFDL-B01, M03 = GFDL-A06, M04 = NASA, M05 = COLA, M06 = CMC2, M07 
= equally weighted model, M08 = weighted model, M09 = equally weighted model without 
COLA, M10 = weighted model without COLA, M11 = hierarchical model and M12 = Five-
year persistence. 
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Figure 2-9: Differences in the rank correlation with respect to the equally weighted model 
(M07). M01-M06 (below the black line) represent individual GCMs, while M8-M11 
represent MME models similar to Figure 2-8. Positive (negative) values refer to a better 
(worse) performance by the equally weighted model M07. 

 

Finally we have performed probabilistic verification of the forecasts as described in 

Laio and Tamea (2007). The results in Figure 2-10 highlight that the best skill in terms of 

probabilistic verification is at the shorter lead times and for the hierarchical MME. 
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Figure 2-10: Probabilistic verification of the forecasts of PDI and ACE using the 
Kolmogorov-Smirnov test at different significance levels (90%, 95% ad 99%). Here M01= 
GFDL, M02 = GFDL-B01, M03 = GFDL-A06, M04 = NASA, M05 = COLA, M06 = 
CMC2, M07 = equally weighted model, M08 = weighted model, M09 = equally weighted 
model without COLA, M10 = weighted model without COLA, M11 = Hierarchical model. 
The larger the p-value, the lesser the evidence of departure from the uniform distribution, 
which is the target to avoid a too narrow or too wide forecast distribution. 

 

2.5. Summary of Chapter 2 

In this chapter, we have examined the retrospective skill in forecasting North Atlantic 

TC activity using four metrics: seasonal hurricane and tropical storm frequencies, ACE and 

PDI over the period of 1982-2015. Each of the hybrid statistical–dynamical models were 

built using SSTATL and SSTTROP as the only two predictors. We used SSTs from the 

ensemble mean of six GCMs from the NMME project. Further, we built MME models 

using three different merging schemes, in which weights were the same for all the GCMs, 

or based on their capability in forecasting the two predictors, or based on how well they 

were able to reproduce the observed TC metric.  
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Overall, these simple hybrid-dynamical forecasting systems are able to reproduce well 

the year-to-year variations in the observations for all the four metrics. The skill overall 

decreases as we increase the forecast lead time. The long-lead skill (i.e., November and 

December-initialized forecasts) improves thank to the weighting schemes developed in this 

study. By using the weighting scheme procedures in building MME models, we can 

normalize the uncertainties associated with our covariates; this leads to improved 

predictions of SST even for the initialization months of November of the previous year, 

which in turn results in improvements in forecasting skills of TC activity. This is 

particularly true for the hierarchical model, in which the skill is retained for longer lead 

time.  
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CHAPTER 3: EVALUATION OF THE SKILL OF NUMERICAL 

WEATHER PREDICTION MODELS IN FORECASITNG 

RAINFALL ASSOCIATED WITH TROPICAL CYCLONES2 

3.1 Introduction 

NWP models provide forecasts of a number of weather-related variables (e.g., 

precipitation and temperature at different levels) for different lead-times (e.g., Lorenc 

1986; Bougeault et al. 2010). However, quantitative information about the skill of NWP 

models in forecasting TC rainfall is still limited (e.g., Marchok et al. 2007; Mohanty et al. 

2014). For a skillful prediction of TC rainfall, the models must predict the strength and 

distribution of rainfall rate and wind fields along with the track and intensity of the TC 

system (see Halperin et al. (2013) for a discussion on TC genesis forecasting of North 

Atlantic TCs). Therefore, precipitation forecasts from NWP models in general and for TCs 

in particular are inherently uncertain and subject to three types of error: localization, timing 

and intensity of precipitation events (e.g., Marchok et al. 2007). In this chapter, our goal is 

to evaluate the skill of NWP models in forecasting TC rainfall by quantifying their errors 

with respect to a reference (rain gauge-based) dataset. Moreover, five additional 

“observational” (remote sensing-based) datasets are also compared to the reference dataset: 

the skill of the NWP models in forecasting TC rainfall is quantified for different lead-times, 

and discussed in light of the performance of these “observational” products. 

 

_________________________ 
 
2 Adapted from: Luitel, B., G. Villarini, and G.A. Vecchi, Can numerical weather prediction models skillfully 
forecast rainfall from U.S. landfalling tropical cyclones?, submitted to Journal of Hydrology, 2016. 
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In this chapter, the description of data and methodology is provided in Section 3.2, 

followed by results and discussion in Section 3.3. Section 3.4 summarizes the main points 

of the study and concludes the chapter. 

 

3.2 Data and Methodology 

We use gridded daily precipitation from National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC) as the reference data. CPC 

precipitation data are obtained by interpolating rain gauge measurements to provide a 

gridded daily product for the continental United States with 0.25° × 0.25° spatial resolution 

(Higgins et al. 2000; Wehner et al. 2010). For the North Atlantic TC track information 

(date, time, latitude and longitude of all recorded storms with a 6-hour resolution) we use 

the HURDAT-2 (Landsea and Franklin 2013) introduced in Chapter 2. 

We evaluate the forecast rainfall produced by five state-of-art NWP models: European 

Centre for Medium-Range Weather Forecasts (ECMWF; Buizza et al. 2007) UK Met 

Office (UKMO; Bowler et al. 2008), National Centers for Environmental Prediction 

(NCEP; Toth and Kalnay 1997), China Meteorological Administration (CMA), and 

Canadian Meteorological Center (CMC; Houtekamer et al. 2009). Data for NWP models 

have been archived from the THORPEX Interactive Grand Global Ensemble (TIGGE; 

Bougeault et al. 2010). To benchmark the skill of these NWP models, we consider rainfall 

estimates from five remote sensing products (one ground based radar and four satellite-

based rainfall products). Stage IV multi-sensor precipitation dataset is produced by NOAA-

NCEP (Lin and Mitchell 2005). It has ~4-km and hourly resolution, and is obtained by 

merging ground-based radars across the United States, and rain gauge measurements are 
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used to perform bias correction. The four satellite-based rainfall products we use are: 

Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis [TMPA; both 

real-time (TMPA_RT) and research version (TMPA_RV); Huffman et al. 2010)]; 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN; Sorooshian et al. 2000); CPC MORPHing Technique (CMORPH; 

Joyce et al. 2004). These satellite-based products have a resolution coarser than Stage IV 

(3-hourly and 0.25-degree), and TMPA-research version is the only product for which a 

monthly bias correction with respect to rain gauges is applied. 

The rainfall products have different spatial resolution. Stage IV has the highest spatial 

resolution (~4km), the four satellite-based remote sensing products and the CPC data have 

0.25 × 0.25 degree lat/lon spatial resolution, whereas all the NWP model output we have 

explored are on a 0.5 degree lat/lon spatial resolution grid (the default resolution in the 

TIGGE archive). Because our focus is on the NWP models, all the products were regridded 

into 0.5-degree resolution to established uniformity in the analyses, with the expectation 

that both the agreement between observational estimates and the forecasting skill will 

increase as we coarsen the spatial resolution (e.g., Lavers and Villarini 2013). Results are 

based only on rainfall over land. 

We focus on the evaluation of the precipitation associated with North Atlantic TCs that 

affected the continental United States over the period 2007–2012, and examine 15 storms 

that came within 500 km of the coast of the United States. We consider TC-rainfall the 

rainfall that occurred within a 500-km buffer around the centre of circulation of a given 

storm. We compare the storm total rainfall obtained from the CPC data (our reference) 

against the rainfall forecasts from the five NWP models. To quantify how close (or far) 
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these forecasts are from the reference data, we also use rainfall estimates from the five 

remote sensing products to give a range of potentially acceptable results.  

Here we use Hurricane Irene (2011) as an example of our approach and methodology 

(Figure 3-1; the results for the other 14 storms are in Appendix B, Figures B-1 - B-14). Our 

approach is to examine the skill of the forecasts starting from the first time the center of 

circulation of the storm is within 500 km from the U.S. coastline. We will refer to this as 

the “0-hour lead-time.” In the example in Figure 3-1, the “0-hour lead-time” represents the 

storm total rainfall from 27 August 2011 at 0 UTC to 31 August 2011 at 0 UTC. We will 

refer to the “12-hour lead-time” the forecast for the period from 27 August 2011 at 0 UTC 

to 31 August 2011 at 0 UTC initialized on 26 August 2011 at 12 UTC. Longer lead-times 

will follow the same rationale.  

We compute rainfall errors with respect to the reference data (CPC) at each 0.5-degree 

pixel by subtracting CPC rainfall accumulations from the rainfall accumulations obtained 

from each of the remote sensing products and the NWP models at each 0.5-degree pixel. 

An examination of the skill of NWP in forecasting TC rainfall is based on both visual and 

quantitative evaluations. Visual inspection was performed by plotting storm total rainfall 

and rainfall errors for each of the storms for all the products. Statistical analysis of the 

rainfall errors was performed by computing the probability density function (pdf) and the 

first three moments of the error distributions. For each of the statistical measures we used 

in the process of skill evaluation, we develop envelopes from the five remote sensing 

products and then used them as the range to quantify and evaluate the skills of the NWP 

models.  
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3.3 Results 

Skill evaluation of the NWP models is based on visual examination of the storm total 

rainfall fields and on the quantitative analysis of the error characteristics. As an example 

of the type of analyses we have performed, we focus on the results for Hurricane Irene 

(2011). According to the NHC report 

(http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf), Irene caused 41 direct deaths in 

the United States, among which six fatalities were due to storm surge, 15 were related to 

high wind and 21 were due to rainfall-induced floods. Based on the National Flood 

Insurance Program, the NHC reported that the total damage caused by the Irene was $15.8 

billion out of which $7.2 billion of the damage was related to inland flooding and surge 

only (Avila and Cangialosi 2011; McCallum et al. 2012). Hurricane Irene affected large 

areas of the eastern United States from North Carolina to Maine (Figure 3-1).  

 
Figure 3-1: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 2011) based 
on the CPC dataset. The red curve with dots represents the storm track. 

http://www.nhc.noaa.gov/data/tcr/AL092011_Irene.pdf
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Figure 3-2 summarizes the total rainfall accumulation during Hurricane Irene according 

to the five remote sensing products and the five NWP models (the results for the other 14 

storms are in Appendix B, Figures B-15-B-28). These results show that there is a relatively 

large range of variability in the “observational products” (top row in Figure 3-2). As a first 

step, each panel in Figure 3-2 is visually compared with CPC rainfall accumulation (Figure 

3-1). This visual comparison provides qualitative information about the capability of each 

of these products in estimating rainfall associated with TCs. Overall, Stage IV is the 

product that more closely resembles the observational data both in terms of magnitudes 

and location of the areas with the larger rainfall accumulations (see also Villarini et al. 

(2011)). On the other hand, the satellite-based estimates tend to have smaller rainfall values 

generally spread over larger areas (this is particularly true for PERSIANN). We will use 

this variability in rainfall estimates from observational systems (ground- and space-based 

sensors) as a way of bounding what we can consider acceptable for the NWP models: we 

will deem as satisfactory NWP rainfall forecasts that are within the range of outcomes from 

the remote-sensing products.   

The TC-rainfall forecasts appear to capture reasonably well the observed storm total 

rainfall both in location and magnitude. This is particularly true for the shortest lead-time, 

with the performance decreasing as we increase the lead-time to five days. As mentioned 

before, this has to do with the fact that we are expecting the models to not only correctly 

forecast the rainfall fields around the center of circulation of the storms, but also to 

correctly track these storms (e.g., Marchok et al. 2007). This issue is clear, for instance, for 

the 5-day lead-time, where the models were not able to correctly forecast the storm track. 
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Our expectations of the rainfall forecasts from the NWP models are admittedly very high, 

but necessary in order to improve our confidence in them. 

 
Figure 3-2: Rainfall accumulation (in mm) for Hurricane Irene (August 26-30 2011) based 
on remote sensing (top row) and NWP models (second to last rows). For the NWP models, 
lead-times increases left to right from 0 hours to 5 days. The red lines represent the storm 
track. 
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Furthermore, we compute rainfall errors using an additive formulation by subtracting 

the storm total rainfall from CPC from each of the remote sensing products and NWP 

models. The results in Figure 3-3 are for Hurricane Irene, while those for the other 14 TCs 

are presented in Appendix B (Figures B-29 – B-42). Stage IV shows the smallest 

discrepancies with respect to CPC, likely due to the bias correction performed using rain 

gauges. On the other hand, the results for the four satellite-based products show areas with 

consistent over- and under-estimation, similar to what observed for the NWP models. 

While for the forecasting models these patterns can be ascribed to errors in the forecasted 

tracks, it is harder to come up with an explanation for the satellite products. The magnitude 

of the differences between CPC and the NWP models increases as we increase the lead-

time, with results up to 2-day lead-times that are comparable to the range of accuracy (both 

quantity and location wise) of the “observational” products. That is, the NWP models up 

to the 48-hour lead-time were at least as skillful at predicting rainfall as the least accurate 

remote sensing product we used. These findings are generally consistent across all the 15 

TCs considered in this study. Among the NWP models, we did not see any one model 

performing consistently as the best or worst for all lead-times.  
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Figure 3-3: Rainfall errors (in mm) for Hurricane Irene (August 26-30 2011) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hours to 5 days. The red lines represent the storm track. 
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A more quantitative examination of the skill of NWP models is achieved by 

computing the pdf of the rainfall errors from each product. Figures 3-4 – 3-8 show the pdf 

of the rainfall errors for models ECMWF, UKMO, NCEP, CMA and CMC respectively 

for all 15 storms, together with the results obtained using the remote sensing products 

(“observational” products). For a given lead-time, if the pdf from any NWP model falls 

within the range of variability from the observational products (grey envelope in Figures 

3-4 - 3-8), we can infer that the model at that lead-time was capable of predicting the TC 

rainfall with a skill comparable to the range of results from our five “observational” 

products. Taking into account all the challenges associated with the forecasting of TC 

rainfall (i.e., correctly forecast both the storm track and the rainfall around the center of 

circulation of these storms), the results in Figures 3-4 – 3-8 are rather promising. Overall, 

the error distributions for these 15 TCs are comparable to the error distributions from the 

remote sensing products. This is particularly true for the shortest lead-times, with the 

results for the 5-day lead that appear to be much smoother than the others. These results 

are consistent across all NWP models (Figures 3-4 – 3-8). 
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Figure 3-4: Probability density functions (pdfs) of rainfall errors exhibited by the ECMWF 
model for different forecast lead-times. The gray shaded envelopes represent the range of 
pdfs obtained from the rainfall errors of the five remote sensing products. 
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Figure 3-5: Same as Figure 3-4, but for UKMO model. 
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Figure 3-6: Same as Figure 3-4, but for NCEP model. 
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Figure 3-7: Same as Figure 3-4, but for CMA model. 
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Figure 3-8: Same as Figure 3-4, but for CMC model. 

 
 

In addition to the entire error distribution, we have also computed the first three 

moments (mean, standard deviation and skewness) of the errors, and compared them across 

NWP models and remote-sensing products (Figure 3-9). A model is considered to have 

better performance if the expected value of the errors is close to zero (unbiased). In the left 



www.manaraa.com

 

47  
 

column of Figure 3-9, the expected values of the errors are closer to zero for the ECMWF, 

followed by UKMO and NCEP. In general, we would consider a “successful” forecast one 

for which the statistical properties of the error are within what we obtain from the remote-

sensing products. For instance, in case of Superstorm Sandy (2012), UKMO, ECMWF and 

CMC have the average error close to zero across different lead times, with error 

characteristics that are almost better than what we obtain from the remote sensing products. 

More generally, with the exception of Tropical Storm Lee (2011) and Tropical Storm 

Debby (2012), the average errors from the NWP models are close to zero (or at least within 

the uncertainties from the remote sensing products) up to the 2-day lead time.  

The standard deviations of the errors from the NWP models show, in general, more 

variability than what obtained from the remote-sensing products (Figure 3-9, middle 

column). The main exception is represented by the ECMWF, which shows variability that 

is comparable with that of the observational products. Therefore, these results indicate that 

the distribution of the errors, while generally unbiased for the NWP models, tends to be 

flatter than what we would expect from a range of remote sensing products. 
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Figure 3-9: Mean (in mm; left column), standard deviation (in mm; middle column) and 
skewness (right column) of the rainfall errors for different lead-times and NWP models. 
The gray rectangular boxes in the background represent the range of values for each 
statistics based on the five remote sensing products. No forecast information for NCEP, 
CMA, and CMC was available for Tropical Storm Barry (2007), Tropical Storm Erin 
(2007) and Hurricane Umberto (2007). 
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Finally, the skewness of the errors from the NWP models is well within the results 

obtained from the observational data across the different models and lead times (Figure 3-

9, right column). Depending on the TC, NWP model or lead time, the error distributions 

tend to be skewed, in particular negatively skewed. Therefore, our quantitative evaluation 

of the forecast errors suggests that the NWP models are capable of representing the error 

structure obtained from remote sensing products, in particular for lead times up to two 

days, even though the error distribution tends to be flatter than what observed from the 

observational datasets.  

 

3.4 Summary of Chapter 3 

In this chapter we have examined the skill of five state-of-the-art NWP models 

[European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office 

(UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological 

Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting 

rainfall associated with 15 U.S. landfalling TCs during the 2007-2012 period. These 

forecasts with a lead time up to five days were compared against gridded rain gauge based 

measurements. We used rainfall estimates from five remote-sensing products as a way of 

quantifying the fidelity we can expect from different observational datasets. The main 

findings of this study can be summarized as follows: 

 Among the remote sensing products, Stage IV showed the closest resemblance with the 

CPC dataset, likely because of the use of rain gauge information for bias correction. 

Among other remote sensing products, PERSIANN consistently underestimated the 

TC rainfall.  
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 Overall, the performance of the NWP models was comparable to the difference 

between remote-sensing based products and the reference dataset, particularly at 

shorter lead-times. While quantitatively the forecasts were comparable to the reference 

data, a substantial error in the precipitation predictions appears to have been related to 

predictions of the storm track itself. Track-relative analyses as those performed in 

Marchok et al. (2007) would alleviate this issue, but were not performed here because 

of the lack of forecast track.  

In interpreting these results, it is important to remember that we are evaluating the 

performance for a very challenging target: we are asking the NWP models not only to 

correctly forecast the storm track, but also to correctly characterize the rainfall distribution 

around this track. When we consider that the errors from the remote sensing products 

(“observations”) are comparable to the forecast errors, the results from the NWP are rather 

encouraging. Overall, our findings indicate that skillful forecasting of storm total rainfall 

associated with North Atlantic TCs making landfall along the U.S. coast is possible up to 

two days prior to landfall. 
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CHAPTER 4: CONCLUSIONS 

The overall objective of this thesis was to evaluate the predictability of North 

Atlantic TCs for long lead times, while we focused on short lead times when examining 

the skill of NWP models in forecasting rainfall associated with these storms.  

We achieved our first objective by developing statistical-dynamical seasonal 

forecasting systems. Each of the hybrid statistical–dynamical models were built using 

tropical Atlantic and tropical mean SSTs as the only two predictors. The TC forecasts were 

based on SST forecasts from six GCMs from the NMME project. We also built multi-

model ensemble averages using three different merging techniques as discussed in Section 

2.3. For a TC season that peaks in August-October, we showed that it is possible to obtain 

skillful forecasts of basin-wide TC activity as early as November of the previous year; this 

means that we can skillfully forecast the upcoming season as the current one is still coming 

to an end. Our findings also clearly show the advantage of using a multi-model ensemble 

average to improve the results with respect to the predictions from individual models. 

Based on our examination of three different weighting schemes to compute the ensemble 

averages, we found that they all lead to improvements, in particular at the longer lead times. 

Overall, we contend that it is possible to skillfully forecast basin-wide activity, with the 

multi-model procedure that would be recommended whenever possible. 

Based on these forecast models, we here provide the forecast of North Atlantic TC 

activity for the 2016 season initialized from November 2015 to March 2016 (Tables 4-1 -

4-4). With few exceptions, almost all of the models point to an above average 2016 season 

in terms of basin-wide hurricane or tropical storm counts (Tables 4-1 and 4-2), whereas 

ACE and PDI values (Tables 4-3 and 5-4) are around the 1982-2015 average. Considering 
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that the hierarchical models provided the overall best retrospective skill, we can forecast a 

median activity of 7 hurricanes and 11 tropical storms (using the median as reference). This 

forecast is likely highly influenced by the very strong El Niño we have just experienced. 

Following a strong El Niño, trade winds can become stronger than normal and an abnormal 

accumulation of cold water can occur in the central and eastern Pacific resulting in a strong 

La Niña ((Hoerling et al. 1997). During La Niña, the North Atlantic TC activity is generally 

above average with higher probability of more damages in the central and eastern United 

States (Pielke Jr; Landsea 1999; Villarini et al. 2014; Vitart and Anderson 2001). Our 

forecasts point to above average activity, even though the values of the TC metrics 

considered here have been generally reducing as we reduce the lead time.  
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Table 4-1: Summary of the 2016 season median hurricane forecast. The results in the 
first six rows are forecasts according to the six individual GCMs described in Table 1-
1 and the remaining five models are the forecasts according to the different MME 
models described in Section 2.3. The March-initialization (2nd column) is the shortest 
lead time, and lead times increase as we move right, with the longest initialization in 
November 2015. Black filled cells indicate forecasts above the average value from the 
1982-2015 value (6.32). 

Hurricane 
Initialization Month 

Mar Feb Jan Dec Nov 
GFDL 12 12 13 11 13 
GFDL_B01 5 7 8 9 9 
GFDL_A06 8 8 9 10 12 
NASA 5 6 NA NA NA 
COLA 7 NA 6 4 6 
CMC2 6 6 6 6 5 
Average 7 8 8 8 8 
Weighted 7 8 9 9 9 
Average w/o COLA 7 8 8 8 9 
Weighted w/o COLA 7 8 8 8 9 
Hierarchical 7 7 8 8 9 

 
 
 
Table 4-2: Same as in Table 4-1 for tropical storms. The average number of tropical 
storms over the period of 1982-2015 is 9.24. 

TS 
Initialization Month 

Mar Feb Jan Dec Nov 
GFDL 14 14 15 14 15 
GFDL_B01 9 11 11 12 12 
GFDL_A06 11 12 12 13 14 
NASA 10 11 NA NA NA 
COLA 10 NA 9 7 9 
CMC2 10 10 10 10 9 
Average 11 11 11 11 12 
Weighted 11 11 12 12 12 
Average w/o COLA 11 11 12 12 12 
Weighted w/o COLA 11 11 12 12 13 
Hierarchical 11 11 11 11 12 
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Table 4-3: Same as in Table 4-1 for ACE. The average value of ACE over the period of 
1982-2015 is 5.8. 

ACE 
Initialization Month 

Mar Feb Jan Dec Nov 
GFDL 8.9 8.2 9.5 7.7 9.4 
GFDL_B01 3.4 4.3 5.1 6.2 8 
GFDL_A06 5.6 5.9 6.7 7.7 9.3 
NASA 3.5 3.9 NA NA NA 
COLA 5.1 NA 4.4 3.1 4.4 
CMC2 3.5 4.1 4.3 4.3 3.2 
Average 4.7 5.12 5.7 5.5 5.9 
Weighted 4.6 5.1 6.1 6.3 6.3 
Average w/o COLA 4.7 5.0 5.9 5.9 6.3 
Weighted w/o COLA 4.7 5.2 6.2 6.5 6.7 
Hierarchical 4.8 4.9 5.5 5.6 5.9 

 

 
 
Table 4-4: Same as in Table 4-1 for PDI. The average value of PDI over the period of 
1982-2015 is 2.4. 

PDI 
Initialization Month 

Mar Feb Jan Dec Nov 
GFDL 4.1 3. 7 4.3 3.4 4.3 
GFDL_B01 1.3 1.7 2.1 2.7 2.5 
GFDL_A06 2.4 2.5 2.9 3.4 4.2 
NASA 1.4 1.5 NA NA NA 
COLA 2.2 NA 1.8 1.2 1.8 
CMC2 1.4 1.6 1.7 1.7 1.2 
Average 1.9 2.1 2.4 2.3 2.5 
Weighted 1.9 2.1 2.6 2.7 2.7 
Average w/o COLA 1.9 2.1 2.5 2.5 2.7 
Weighted w/o COLA 1.9 2.2 2.7 2.8 2.9 
Hierarchical 2.0 2.1 2.3 2.4 2.5 
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Our second objective of evaluating the skill in short-term forecasting of rainfall 

associated with TCs was achieved by considering five state-of-the-art NWP models. Our 

focus was on 15 U.S landfalling TCs over the period of 2007-2012. We quantified the skill 

of these models by visual examination of the distribution of the errors for the different lead-

times, and numerical examination of the first three moments of the error distribution. 

Moreover, to assess whether a NWP forecast could be potentially useful, we used rainfall 

estimates from five remote-sensing rainfall products for the same 15 storms to aid with the 

decision. Our results were rather encouraging, considering the complexity of the problem: 

we were not only asking the NWP models to forecast the rainfall distribution around the 

TC track, but also to correctly track the future path of these storms. Despite the large 

complexity of the problem, the NWP models performed relatively well, with skillful 

rainfall forecasts with a lead time up to about two days.  

This work represents a first step towards a more comprehensive forecasting system 

of TC activity. Ideally, we are interested in skillful predictions of TC impacts (e.g., heavy 

rainfall and flooding) at the local scale with a long lead time. While this is currently not 

possible, significant progress has been made in this direction in the recent years (e.g., 

Murakami et al. 2016), with more progress expected by improving our understanding of 

the physical processes controlling TC activity, tracking and impacts. 
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APPENDIX A: SUPPLEMENTAL MATERIALS FOR CHAPTER 2 

 

Figure A-1: Retrospective seasonal forecast of hurricane using GFDL model, initialized 
from November (of the previous year for each hurricane season) to August (of the same 
year). In each panel, the circles are observed values, the white line is the median (50th 
percentile) for each season. The outer light gray area represents the region between the 5th 
and 95th percentiles, while the middle dark gray area represents the region between the 25th 
and 75th percentiles.  
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Figure A-2: Same as in Figure A-1, but using GFDL-B01. 
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Figure A-3: Same as in Figure A-1, but using GFDL-A06. 
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Figure A-4: Same as in Figure A-1, but using NASA. 
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Figure A-5: Same as in Figure A-1, but using CMC2. 
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Figure A-6: Same as in Figure A-1, but using COLA. 
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Figure A-7: Same as in Figure A-1, but using model in which the predictors are equally 
weighted. 
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Figure A-8: Same as in Figure A-1, but using model in which the predictors are equally 
weighted without COLA. 
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Figure A-9: Same as in Figure A-1, but using model in which the predictors are weighted 
without COLA. 
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Figure A-10: Same as in Figure A-1, but using Hierarchical model. 
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Figure A-11: Retrospective seasonal forecast of TC using GFDL model, initialized from 
November (of the previous year for each hurricane season) to August (of the same year). 
In each panel, the circles are observed values, the white line is the median (50th percentile) 
for each season. The outer light gray area represents the region between the 5th and 95th 
percentiles, while the middle dark gray area represents the region between the 25th and 75th 
percentiles. 
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Figure A-12: Same as in Figure A-11, but using GFDL-B01. 
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Figure A-13: Same as in Figure A-11, but using GFDL-A06. 
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Figure A-14: Same as in Figure A-11, but using NASA. 
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Figure A-15: Same as in Figure A-11, but using CMC2. 
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Figure A-16: Same as in Figure A-11, but using COLA. 
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Figure A-17: Same as in Figure A-11, but using model in which the predictors are equally 
weighted. 
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Figure A-18: Same as in Figure A-11, but using model in which the predictors are equally 
weighted without COLA.  
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Figure A-19: Same as in Figure A-11, but using model in which the predictor are weighted 
without COLA. 
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Figure A-20: Same as in Figure A-11, but using Hierarchical Model. 
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Figure A-21: Retrospective seasonal forecast of ACE using GFDL model, initialized from 
November (of the previous year for each hurricane season) to August (of the same year). 
In each panel, the circles are observed values, the white line is the median (50th percentile) 
for each season. The outer light gray area represents the region between the 5th and 95th 
percentiles, while the middle dark gray area represents the region between the 25th and 75th 
percentiles. 
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Figure A-22: Same as Figure A-21, but using GFDL-B01. 
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Figure A-23: Same as Figure A-21, but using GFDL-A06. 
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Figure A-24: Same as Figure A-21, but using NASA. 
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Figure A-25: Same as Figure A-21, but using CMC2. 
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Figure A-26: Same as Figure A-21, but using COLA.  
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Figure A-27: Same as Figure A-21, but using model in which predictors are equally 
weighted. 
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Figure A-28: Same as Figure A-21, but using model in which the predictors are equally 
weighted without COLA. 
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Figure A-29: Same as Figure A-21, but using model in which the predictors are weighted 
without COLA. 
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Figure A-30: Same as Figure A-21, but using Hierarchical model. 
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Figure A-31: Retrospective seasonal forecast of PDI using GFDL model, initialized from 
November (of the previous year for each hurricane season) to August (of the same year). 
In each panel, the circles are observed values, the white line is the median (50th percentile) 
for each season. The outer light gray area represents the region between the 5th and 95th 
percentiles, while the middle dark gray area represents the region between the 25th and 75th 
percentiles. 
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Figure A-32: Same as Figure A-31, but using GFDL-B01. 
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Figure A-33: Same as Figure A-31, but using GFDL-A06. 
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Figure A-34: Same as Figure A-31, but using NASA. 
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Figure A-35: Same as Figure A-31, but using CMC2. 
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Figure A-36: Same as Figure A-31, but using COLA. 
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Figure A-37: Same as Figure A-31, but using model in which the predictors are equally 
weighted. 
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Figure A-38: Same as Figure A-31, but using model in which the predictors are equally 
weighted without COLA. 
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Figure A-39: Same as Figure A-31, but using model in which the predictors are weighted 
without COLA. 
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Figure A-40: Same as Figure A-31, but using Hierarchical model. 
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APPENDIX B: SUPPLEMENTAL MATERIALS FOR CHAPTER 3 

 
Figure B-1: Rainfall accumulation (in mm) for Tropical Storm Barry (June 2-6 2007) based 
on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-2: Rainfall accumulation (in mm) for Tropical Storm Erin (August 16-21 2007) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-3: Rainfall accumulation (in mm) for Hurricane Humberto (September 11-15 
2007) based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-4: Rainfall accumulation (in mm) for Hurricane Dolly (July 23-28 2008) based 
on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-5: Rainfall accumulation (in mm) for Tropical Storm Fay (August 19-28 2008) 
based on the CPC dataset. The red line with dots represents the storm track.  
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Figure B-6: Rainfall accumulation (in mm) for Hurricane Gustav (August 31- September 
5 2008) based on the CPC dataset. The red line with dots represents the storm track. 



www.manaraa.com

 

102  
 

 

 
Figure B-7: Rainfall accumulation (in mm) for Tropical Storm Hanna (September 5-8 
2008) based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-8: Rainfall accumulation (in mm) for Hurricane Ike (September 12-15 2008) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-9: Rainfall accumulation (in mm) for Hurricane Ida (November 10-12 2009) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-10: Rainfall accumulation (in mm) for Tropical Storm Hermine (September 6-11 
2010) based on the CPC dataset. The red line with dots represents the storm track. 

 



www.manaraa.com

 

106  
 

 
Figure B-11: Rainfall accumulation (in mm) for Tropical Storm Lee (September 3-8 2011) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-12: Rainfall accumulation (in mm) for Tropical Storm Debby (June 25-28 2012) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-13: Rainfall accumulation (in mm) for Hurricane Isaac (August 28- September 2 
2012) based on the CPC dataset. The red line with dots represents the storm track. 

 

 



www.manaraa.com

 

109  
 

 
Figure B-14: Rainfall accumulation (in mm) for Hurricane Sandy (October 28-31 2012) 
based on the CPC dataset. The red line with dots represents the storm track. 
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Figure B-15: Rainfall accumulation (in mm) (in mm) for Tropical Storm Barry (June 2-6 
2007) based on remote sensing (top row) and NWP models (from second to last rows). For 
the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. Forecasts for NCEP, CMA and CMC were not available. 
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Figure B-16: Rainfall accumulation (in mm) (in mm) for Tropical Storm Erin (August 16-
21 2007) based on remote sensing (top row) and NWP models (from second to last rows). 
For the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. Forecasts for NCEP, CMA and CMC were not available. 
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Figure B-17: Rainfall accumulation (in mm) (in mm) for Hurricane Humberto (September 
11-15 2007) based on remote sensing (top row) and NWP models (from second to last 
rows). For the NWP models, lead-times increases left to right from 0 hour to 5 days. The 
red lines represent the storm track. Forecasts for NCEP, CMA and CMC were not available. 
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Figure B-18: Rainfall accumulation (in mm) (in mm) for Hurricane Dolly (July 23-28 
2008) based on remote sensing (top row) and NWP models (from second to last rows). For 
the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track.  
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Figure B-19: Rainfall accumulation (in mm) (in mm) for Tropical Storm Fay (August 19-
28 2008) based on remote sensing (top row) and NWP models (from second to last rows). 
For the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-20: Rainfall accumulation (in mm) (in mm) for Hurricane Gustav (August 31- 
September 5 2008) based on remote sensing (top row) and NWP models (from second to 
last rows). For the NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. 
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Figure B-21: Rainfall accumulation (in mm) (in mm) for Tropical Storm Hanna (September 
5-8 2008) based on remote sensing (top row) and NWP models (from second to last rows). 
For the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-22: Rainfall accumulation (in mm) (in mm) for Hurricane Ike (September 12-15 
2008) based on remote sensing (top row) and NWP models (from second to last rows). For 
the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-23: Rainfall accumulation (in mm) (in mm) for Hurricane Ida (November 10-12 
2009) based on remote sensing (top row) and NWP models (from second to last rows). For 
the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-24: Rainfall accumulation (in mm) (in mm) for Tropical Storm Hermine 
(September 6-11 2010) based on remote sensing (top row) and NWP models (from second 
to last rows). For the NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. 
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Figure B-25: Rainfall accumulation (in mm) (in mm) for Tropical Storm Lee (September 
3-8 2011) based on remote sensing (top row) and NWP models (from second to last rows). 
For the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-26: Rainfall accumulation (in mm) (in mm) for Tropical Storm Debby (June 25-
28 2012) based on remote sensing (top row) and NWP models (from second to last rows). 
For the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 

 

. 
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Figure B-27: Rainfall accumulation (in mm) (in mm) for Hurricane Isaac (August 28- 
September 2 2012) based on remote sensing (top row) and NWP models (from second to 
last rows). For the NWP models, lead-times increases left to right from 0 hour to 5 days. 
The red lines represent the storm track. 
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Figure B-28: Rainfall accumulation (in mm) (in mm) for Hurricane Sandy (October 28-31 
2012) based on remote sensing (top row) and NWP models (from second to last rows). For 
the NWP models, lead-times increases left to right from 0 hour to 5 days. The red lines 
represent the storm track. 
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Figure B-29: Rainfall errors (in mm) for Tropical Storm Barry (June 2-6 2007) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hour to 5 days. The red lines represent the storm track. Forecasts for NCEP, CMA and 
CMC were not available. 
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Figure B-30: Rainfall errors (in mm) for Tropical Storm Erin (August 16-21 2007) based 
on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. Forecasts for NCEP, 
CMA and CMC were not available. 
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Figure B-31: Rainfall errors (in mm) for Hurricane Humberto (September 11-15 2007) 
based on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. Forecasts for NCEP, 
CMA and CMC were not available. 

 

 



www.manaraa.com

 

127  
 

 
Figure B-32: Rainfall errors (in mm) for Hurricane Dolly (July 23-28 2008) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hour to 5 days. The red lines represent the storm track.  
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Figure B-33: Rainfall errors (in mm) for Tropical Storm Fay (August 19-28 2008) based 
on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-34: Rainfall errors (in mm) for Hurricane Gustav (August 31- September 5 2008) 
based on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-35: Rainfall errors (in mm) for Tropical Storm Hanna (September 5-8 2008 based 
on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-36: Rainfall errors (in mm) for Hurricane Ike (September 12-15 2008) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hour to 5 days. The red lines represent the storm track. 
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Figure B-37: Rainfall errors (in mm) for Hurricane Ida (November 10-12 2009) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hour to 5 days. The red lines represent the storm track. 
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Figure B-38: Rainfall errors (in mm) for Tropical Storm Hermine (September 6-11 2010) 
based on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-39: Rainfall errors (in mm) for Tropical Storm Lee (September 3-8 2011) based 
on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-40: Rainfall errors (in mm) for Tropical Storm Debby (June 25-28 2012) based 
on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-41: Rainfall errors (in mm) for Hurricane Isaac (August 28- September 2 2012) 
based on remote sensing (top row) and NWP models (second to last rows) The errors are 
computed with respect to the CPC data. For the NWP models, lead-times increases left to 
right from 0 hour to 5 days. The red lines represent the storm track. 
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Figure B-42: Rainfall errors (in mm) for Hurricane Sandy (October 28-31 2012) based on 
remote sensing (top row) and NWP models (second to last rows) The errors are computed 
with respect to the CPC data. For the NWP models, lead-times increases left to right from 
0 hour to 5 days. The red lines represent the storm track. 
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